小七文档网 >
教案设计 > / 正文
多边形教案集锦
2023-06-27 19:40:07 ℃多边形教案第1篇一、素质教育目标(一)知识教学点1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.2.了解四边形的不稳定性及它在实际生产,生活中的应用.(二)能力训练点1.通过引导学生观察气象下面是小编为大家整理的多边形教案集锦,供大家参考。
多边形教案 第1篇
一、素质教育目标
(一)知识教学点
1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.
2.了解四边形的不稳定性及它在实际生产,生活中的应用.
(二)能力训练点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.
2.通过推导四边形内角和定理,对学生渗透化归思想.
3.会根据比较简单的条件画出指定的四边形.
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美.
二、学法引导
类比、观察、引导、讲解
三、重点·难点·疑点及解决办法
1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.
第2课时
七、教学步骤
【复习提问】
1.什么叫四边形?四边形的内角和定理是什么?
2.如图4-9, 求 的度数(打出投影).
【引入新课】
前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.
【讲解新课】
1.四边形的外角
与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.
2.外角和定理
例1 已知:如图4-11,四边形ABCD的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .
求 .
(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).
(2)教给学生一组外角的画法——同向法.
即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.
(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.
证得:
360°
外角和定理:四边形的外角和等于360°
3.四边形的不稳定性
①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?
(学生回答)
②若以 为边作四边形ABCD.
提示画法:①画任意小于平角的 .
②在 的两边上截取 .
③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.
④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.
大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定.
③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.
教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:
①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.
(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.
【总结、扩展】
1.小结:
(1)四边形外角概念、外角和定理.
(2)四边形不稳定性的应用和克服不稳定性的理论根据.
2.扩展:如图4-15,在四边形ABCD中, ,求四边形ABCD的面积
八、布置作业
教材P128中4.
九、板书设计
十、随堂练习
教材P124中1、2
补充:(1)在四边形ABCD中, , 是四边形的外角,且 ,则 度.
(2)在四边形ABCD中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度
(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.
多边形教案 第2篇
【教学内容】
【教学目标】
1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.
2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.
3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.
【教学重点与教学难点】
1.重点:多边形的内角和公式
2.难点:多边形内角和的推导
3.关键:.多边形"分割"为三角形.
【教具准备】三角板、卡纸
【教学过程】
一、创设情景,揭示问题
1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?
2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?
你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力
二、探索研究学会新知
1、回顾旧知,引出问题:
(1)三角形的内角和等于_________.外角和等于____________
(2)长方形的内角和等于_____,正方形的内角和等于__________.
2、探索四边形的内角和:
(1)学生思考,同学讨论交流.
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。
(3)引导学生用"分割法"探索四边形的内角和:
方法一:连接一条对角线,分成2个三角形:
180°+180°=360°
从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.
180°×4-360°=360°
3、探索多边形内角和的问题,提出阶梯式的问题:
你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)
你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:
n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:
(1)一个八边形的内角和是_____________度
(2)一个多边形的内角和是720度,这个多边形是_____边形
(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________
通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和
三、点例透析
运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?
四、应用训练强化理解
4、第83页练习1和2多边形内角和定理的应用
五、知识回放
课堂小结提问方式:本节课我们学习了什么?
1多边形内角和公式
2多边形内角和计算是通过转化为三角形
六、作业练习
1、书面作业:
2、课外练习:
多边形教案 第3篇
1
目标
知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想
过程与方法:经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
重点:多边形内角和定理的探索和应用
教学难点:边形定义的理解;
多边形内 角和公式的推导;
转化的数学思维方法的渗透.
教学过程
第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入)
1.多媒 体展示蜂窝,教师结合图片让学生发现生活中无处不在的多 边形.
2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?
第二环节 概念形成(5分钟,学生理解定义)
1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素.
2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形.
第三环节 实验探究(12分钟,学生动手操作,探究内角和)
(以四人小组为单位展开探究活动)
提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 1 . c o m
活动一:利用四边形探索四边形内角和
要求:先独立思考再小组合作交流完成.)
(师巡视,了解学生探索进程并适当点拨.)
(生思考后交流,把不同 的方案在纸上完成.)
……(组 间交流,教师展示几种方法)
教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?
进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
活动二:探索五边形内角和
(要求:独立思考,自主完成.)
第四环节 思维升华(5分钟,教师引导学生进行推算)
教学过程:
探索n边形内角和,并试着说明理由
(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)
n边形的内角和=(n—2)180°
正n边形的一个内角= =
第五环节 能力 拓展(12分钟,学生抢答)
抢答题:
1.正八边形的内角和为_______ .
2.已知多边形的内角和为900°,则这个多边形的边数为_______.
3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.
应用发散:
4.如图所示的模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么?
5.小明有一个设想:2008年奥运会在北京召开,要是能设计一个内角和是2008°的多边形花坛该多有意义啊!小明的这个想法能实现吗?
第六环节 时小结:(3分钟,学生填表)
教师和学生一起对本节内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于下反馈给老师
第七环节 布置作业:
习题4、10
A组(优等生)1;
思考题:一个多边形去掉一个内角后形成的多边形内角和为 1800°,你能求出原多边形的边数吗?
B 组(中等生)1
C组(后三分之一生)1
教学反思:
多边形教案 第4篇
一、素质教育目标
(一)知识教学点
1.使学生把握四边形的有关概念及四边形的内角和外角和定理.
2.了解四边形的不稳定性及它在实际生产,生活中的应用.
(二)能力练习点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.
2.通过推导四边形内角和定理,对学生渗透化归思想.
3.会根据比较简单的条件画出指定的四边形.
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.
(三)德育渗透点
使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美.
二、学法引导
类比、观察、引导、讲解
三、重点·难点·疑点及解决办法
1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.
四、课时安排
2课时
五、教具学具预备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.
第一课时
七、教学步骤
复习引入
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的.关系,并运用有关四边形的知识解决一些新问题.
引入新课
用投影仪打出课前画好的教材中p119的图.
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).
讲解新课
1.四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形.
(2)要与三角形类比.
(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.
(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.
2.四边形内角和定理
教师问:
(1)在图4-3中对角线ac把四边形abcd分成几个三角形?
(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?
(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.
我们知道,三角形内角和等于180°,那么四边形的内角和就等于:
①2×180°=360°如图4—6;
②4×180°-360°=360°如图4-7.
例1已知:如图4—8,直线于b、于c.
求证:(1) ; (2) 。
本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出.
总结、扩展
1.四边形的有关概念.
2.四边形对角线的作用.
3.四边形内角和定理.
八、布置作业
教材p128中1(1)、2、 3.
九、板书设计
四边形有关概念
四边形内角和
例1
十、随堂练习
教材p122中1、2、3.
多边形教案 第5篇
教学内容:LOGO语言重复命令
知识目的:
1、使学生了解重复命令的特点。
2、掌握重复命令的用法,能使用重复命令画出各种图形。
能力目标:
1、能总结重复的内容
2、重复的次数
情感目标:
1、增强学生学习信息技术的兴趣。
2、培养学生的协作意识。
教学重点:重复命令的格式。
教学时间:一课时
教学过程:
1.画正方形
⑵屏幕显示画正方形的8条命令,学生观察有何特点。画正方形的命令是由4组完全相同的命令(fd 50 rt 90)组成。
⑶屏幕显示“repeat 4[fd 50 rt 90]”,请同学在LOGO语言中输入,看一看有何效果。(也画出了一个正方形)
⑷教师讲解:这条命令也可以画正方形,而且比刚才我们输入的8条命令要简洁了许多。这就是重复命令。用lg语言绘画时,检查要重复相同格式的命令,使输入格式变得非常繁琐。为了使命令变得简单而且清晰,可以使用重复命令repeat,只要输入这道命令,就可以完成许多相同的操作,小海龟就轻松多了。
⒉讲解重复命令的格式
通过“repeat 4[fd 50 rt 90]”了解重复命令的格式:repeat 重复的次数[重复执行的内容]强调讲解该命令。
从这节课开始我们学习重复命令,学会这条命令后,我们就能画出很多由重复图形组成的漂亮图形。
小海龟每次转360÷5=72度。
命令:REPEAT 5[FD 50 RT 72]或REPEAT 5[FD 50 RT ]边长为60的正六边形小海龟每次转360÷6= 度。
命令:REPEAT 6[FD RT ]或REPEAT 6[FD RT ]小海龟每次转 度。
命令:画出来的是什么图形?正多边形的边数越 画出的图形就越像
3、小结
今天,我们学习了重复命令,让我们从比较繁琐的键盘操作中得到了解放了。师生再温习一下命令格式,需强调的地方。只要设置好下面三个数,就可以正确使用重复命令:
1. 重复的次数;
2. 每次走的步数;
3. 每次转动的角度。
教学后记
- 上一篇:孔雀东南飞教案8篇
- 下一篇:高中语文必修教案【精选推荐】
猜你喜欢
- 2024-07-27 设计调查报告3篇
- 2024-01-25 《论语》导读教案(全文完整)
- 2023-10-18 2023年度《论语》导读教案(全文完整)
- 2023-08-01 2023年度大班美术教案我家集锦【完整版】
- 2023-08-01 吃西瓜教案热门(范文推荐)
- 2023-08-01 2023年中班体育教案户外体育活动8篇
- 2023-08-01 2023年大班教案魔法一分钟8篇【精选推荐】
- 2023-08-01 2023年居家安全常识教育教案8篇
- 2023-07-31 2023年度复习6以内数教案(精选文档)
- 2023-07-31 端午节小班包粽子教案集锦9篇(精选文档)
- 搜索
-
- 教资教案模板中学数学6篇 12-29
- 2022年数学《年月日》教案设计7篇 12-11
- 小学四年级语文《徐悲鸿励志学画》原文 12-21
- 2022年小学六年级数学《比例基本性质》 12-24
- 2022年度高中语文作文教学教案9篇 12-21
- 最新大班队列训练教案(六篇) 05-07
- 幼儿园防刀具安全教案4篇(全文完整) 12-22
- 2022年初中数学教学设计教案4篇【优秀 12-22
- 五一安全教育教案7篇 12-01
- 最新小学教案学情分析(四篇)(全文) 06-16
- 04-232023年年度工作计划免费下载(1合集)(精选文档)
- 04-23新学期新计划免费(九篇)
- 04-23最新机遇记叙文免费(3篇)
- 04-232023职称年终总结报告免费下载(十3篇)
- 04-232023黑孩子罗伯特课文免费下载(3篇)
- 04-23最新个人借款借条样板(10篇)(全文)
- 04-23公司写给客户道歉信免费下载(十一篇)
- 04-23最新物业管理委托服务合同书免费下载(14篇)
- 04-23最新农民工工资承诺书(11篇)(精选文档)
- 04-232023年亲戚结婚请假条(四篇)